FINAL REPORT* ## February 18, 2000 # I-129 DOSIMETRY: # A DEMONSTRATION PROJECT FOR THE USE OF ¹²⁹I AS A SURROGATE FOR ¹³¹I IN BELARUS AND OTHER REGIONS CONTAMINATED BY CHERNOBYL FALLOUT Principal Investigator: Prof. Tore Straume, Radiobiology Division, University of Utah, 729 Arapeen, Suite 2335, Salt Lake City, UT 84108 (t.straume@m.cc.utah.edu) Co-Investigators: Prof. Lynn Anspaugh, Radiobiology Division, University of Utah, Salt Lake City, UT 84108. Dr. Alfredo Marchetti, Lawrence Livermore National Laboratory, Livermore, CA 94550. Dr. Victor Minenko, Research and Clinical Institute of Radiation Medicine and Endocrinology, Minsk, Belarus. Dr. Gabriele Voigt, GSF-Institute for Radiation Protection, Munich, Germany. ^{*}Submitted to Frank Hawkins, Office of International Health Programs, U.S. Department of Energy (EH-63). ## Organizations Participating in the Project Ministry of Health of the Republic of Belarus, V.A. Stezhko, Head of the Chernobyl Department. *United States Department of Energy,* F. Hawkins, Director, Office of International Health Programs. Research and Clinical Institute of Radiation Medicine and Endocrinology, A.G. Mrochek, Director, and Ya.I. Kenigsberg, Deputy Director. The Republican Center of the Radiation Control and Monitoring of Natural Environment, I.I. Matveenko, Director. GSF-Institute of Radiation Protection, G. Voigt, Deputy Head of Riskanalysis Department. University of Utah, T. Straume, Principal Investigator of Project. Acknowledgements: The Principal Investigator wishes to thank Frank Hawkins and his staff at the Office of International Health Programs (EH-63), Department of Energy, for providing the core financial support for this very successful effort. The PI also extends his appreciation to GSF (Munich) for being a key partner in providing technical field support, instruments, and also helping with the financial support in connection with the 1997 soil sampling expedition in Belarus. #### **INTRODUCTION** Several hundred thousand children's thyroids were measured with survey meters within weeks after the Chernobyl accident to reconstruct thyroid doses in regions of Belarus, Ukraine, and Russia contaminated by radionuclides. For areas where such measurements were either absent or inadequately performed, it was hoped that the deposition density of ¹³⁷Cs might be a useful surrogate for the deposition density of ¹³¹I and that this information, coupled with the use of ecological models, could be used to infer doses to the thyroid. However, we now know that the ratios of ¹³¹I-to-¹³⁷Cs vary by factors of more than 300 over the country of Belarus and thus this ratio is unreliable for thyroid dosimetry (e.g., Straume et al. 1996, and data presented here). A better surrogate for the retrospective determination of the deposition density of 131 I would be 129 I, which has a half life of 1.57×10^7 years and which has been reported to have a mean-residence time in the first meter of surface soil of approximately 1000 years (Kocher 1991). Due to its low specific activity and its lack of emission of a high-energy gamma ray, 129 I is not measured with sufficient sensitivity by conventional counting techniques, but it can be measured with techniques such as neutron-activation analysis and accelerator-mass spectrometry (AMS). For soil samples, the detection limit for 129 I measured by neutron activation appears to be in the range of 1 to 100 μ Bq sample-1 (Katagiri et al. 1990; Muramatsu et al. 1990; Doshi et al. 1991); this activity range is equivalent to $\sim 10^9$ to $\sim 10^{11}$ 129 I atoms per sample. A similar detection limit has been reported for thyroids (Handl et al. 1990). In contrast, the detection limit for 129 I measured by AMS is $\sim 10^6$ atoms per sample (Elmore and Phillips 1987), orders of magnitude lower than the detection limits cited above for neutron activation. Importantly, the increased sensitivity of AMS is in fact necessary for the measurement of depth profiles in soil of sufficient precision to reconstruct ¹²⁹I deposition densities in Belarus, and by inference, in the Ukraine and Russia as well (Straume et al. 1996 and 1997). In 1993, a feasibility study was initiated to determine whether the deposition of ¹²⁹I released from Chernobyl could be measured reliably using soil sampling and extraction methods to be developed as part of the feasibility study and using AMS for isotopic analysis. Twenty-two sites in 11 settlements in Belarus were sampled by coring to 30 cm depths in soil. Efforts were taken to ensure that the sampling sites had not been disturbed since the Chernobyl accident (which, in retrospect, turned out to be correct most of the time). Results from the feasibility study have been published (Straume et al. 1996) and demonstrated that our AMS-based approach, together with iodine extraction methods developed for that project (Marchetti et al. 1994 and 1997), can be used reliably to measure ¹²⁹I in soil samples from background levels to the highest concentrations in the 30-km zone. The feasibility study also confirmed previous findings by others that the ratio of radioiodine-to-radiocesium varied substantially over space and may therefore not be reliable as a general basis for thyroid dosimetry. In 1996, a follow-on study was initiated with the objectives to use the methods developed in the feasibility study to measure ¹²⁹I, total iodine, and ¹³⁷Cs in soil samples from settlements throughout the country of Belarus. To accomplish this, a soil-sampling expedition was undertaken in 1997. #### **MATERIALS AND METHODS** ## Soil sampling Soil-sampling expeditions were conducted in Belarus in May 1993 and June 1997 and included scientists from the USA, Belarus, Russia, and Germany. The 1993 sampling expedition has been described previously (Straume et al. 1996). Settlements and sampling sites for both expeditions are listed in Table 1 and plotted on the map of Belarus in Figure 1. For the 1997 sampling expedition, the settlements were selected so that soil would be sampled from all major regions of Belarus. The specific sampling sites within each settlement were selected based on (1) information from local officials that the sites had not been disturbed since the accident, (2) our measurements of 137Cs-photon flux as determined by field-gamma spectrometry and of external gamma-exposure rates, and (3) information indicating that the sites were representative of the settlement. As far as possible, sites were selected in fields away from buildings or trees that might have influenced local deposition patterns. At each sampling site, five cylindrical cores of 5-cm diameter and 30-cm depth were obtained in a 5 m \times 5 m square and one in the center. Generally, each core was divided into 2 depth layers (0-15 cm and 15-30 cm) and the five cores combined for each depth layer. For two settlements that were sampled in 1993 and resampled in 1997 (Holochie and Veprin), full depth profiles were obtained for intercomparison, i.e., 0-2.5, 2.5-5, 5-10, 10-15, 15-20, 20-25, and 25-30 cm, and the layers from the same depths combined for each site. The approach of obtaining multiple cores in a sampling site should average possible differences in radionuclide concentrations within the sampling site. Table 1. Soil sampling sites in Belarus | Table 1. 3011 | Samping | sites iii belalus | | |--------------------|---------|----------------------|-----| | Settlement & | Мар | Settlement & | Мар | | Sampling site | # | Sampling site | # | | Tulgovitchi-1 (93) | 1 | Grandichi-1 (97) | 39 | | Tulgovitchi-2 (93) | 2 | Grandichi-2 (97) | 40 | | Deriazshna-1 (93) | 3 | Lunno-1 (97) | 41 | | Deryashnya-2 (93) | 4 | Lunno-2 (97) | 42 | | Deryashnya-3 (93) | 5 | Pogonnoe-1 (93) | 43 | | Veprin-1 (93) | 6 | Pogonnoe-2 (93) | 44 | | Veprin-2 (93) | 7 | Izabelino-1 (97) | 45 | | Gorodische-1 (97) | 8 | Izabelino-2 (97) | 46 | | Gorodische-2 (97) | 9 | Shevernichi-1 (97) | 47 | | Boloto-1 (97) | 10 | Shevernichi-2 (97) | 48 | | Boloto-2 (97) | 11 | Osipovichi-1 (97) | 49 | | Pruzhany-1 (97) | 12 | Osipovichi-2 (97) | 50 | | Pruzhany-2 (97) | 13 | N. Borschevka-1 (93) | 51 | | Ostrogliady-1 (93) | 14 | N. Borschevka-2 (93) | 52 | | Ostrogliady-2 (93) | 15 | Chudiany-1 (93) | 53 | | Bogino-1 (97) | 16 | Rotki-1 (97) | 54 | | Bogino-2 (97) | 17 | Bobr-1 (97) | 55 | | Obrub-1 (97) | 18 | Bobr-2 (97) | 56 | | Obrub-2 (97) | 19 | Pleschenitsy-1 (97) | 57 | | Holochie-1 (93) | 20 | Pleschenitsy-2 (97) | 58 | | Holochie-2 (93) | 21 | Losha-1 (97) | 59 | | Yankovichi-1 (97) | 22 | Losha-2 (97) | 60 | | Yankovichi-2 (97) | 23 | Zabolotye-1 (97) | 61 | | Lyntupy-1 (97) | 24 | Zabolotye-2 (97) | 62 | | Lyntupy-2 (97) | 25 | Krynka-1 (97) | 63 | | Babinichi-1 (97) | 26 | Krynka-2 (97) | 64 | | Babinichi-2 (97) | 27 | Kulikovka-1 (97) | 65 | | Korma-2 (97) | 28 | Kulikovka-2 (97) | 66 | | Korma-1 (97) | 29 | Bokhany-1 (97) | 67 | | Stodolichi-1 (97) | 30 | Bokhany-2 (97) | 68 | | Stodolichi-2 (97) | 31 | Volkovichi-1 (97) | 69 | | Simonichi-1 (97) | 32 | Volkovichi-2 (97) | 70 | | Simonichi-2 (97) | 33 | Veprin-1(97) | 71 | | Yanovka-1 (93) | 34 | Veprin-2(97) | 72 | | Yanovka-2 (93) | 35 | Bentyai-1 (93) | 73 | | Porechye-1 (97) | 36 | Bentyai-2 (93) | 74 | | Porechye-2 (97) | 37 | Ostrovskie-1 (93) | 75 | | Holochie-1 (97) | 38 | Ostrovskie-2 (93) | 76 | **Figure 1**. A map of Belarus with sampling locations. Sampling expeditions in 1993 (●) and 1997 (O) are included. Also included are the locations sampled in both 1993 and 1997 (●). Soil cores were processed at the Research and Clinical Institute of Radiation Medicine and Endocrinology (RCIRME) in Minsk, Belarus. Processing involved drying at room temperature and weighing daily until no further weight loss was detected. Each soil sample was then mixed and sieved through a 3-mm sieve. Aliquots of the homogenized soil samples were provided to the University of Utah for iodine extraction, measurement of ¹²⁹I, and total iodine, and to the RCIRME for measurement of ¹³⁷Cs by gamma spectrometry. ## Extraction and quantification of total iodine in soil Aliquots of the processed soil samples (typically, one to three grams) were weighed in a porcelain-combustion boat and placed in a quartz-tube furnace according to the method of Marchetti et al. 1997. One end of the quartz tube was connected to a supply of oxygen and the other end was connected to a bottle containing a solution to trap iodine. Between the combustion boat and the trap there was a quartz-wool plug preheated to 1000°C by an auxiliary furnace. The trapping solution was prepared by adding 0.5 g of Na2SO3 to 75 mL of 0.1 M KOH. Once the combustion boat was placed at the center of the main furnace, the oxygen flow was adjusted to 50–100 mL min⁻¹ and the temperature of the furnace was set at 1000°C. The furnace required about 20 min to reach that temperature. Once the furnace was at 1000°C, combustion was allowed to proceed for 90 min. Under these conditions, essentially all iodine present in the sample was volatilized and carried in the oxygen stream, ultimately as molecular iodine. Any other volatile compounds of iodine that may have been released as the furnace heated up would have been combusted at the preheated quartz plug. The iodine then reacted with the solution to form iodide that remained in the liquid trap. After combustion, the trap solution was transferred to a 100-mL volumetric flask and diluted to the mark with deionized water. A 50-mL aliquot of the solution was placed in a 250-mL beaker followed by the addition of 5 to 20 mL of a 1000-ppm solution of iodide as carrier prepared from KI and 1 mL of concentrated HNO3. Finally, a solution of 5% AgNO3 was added in excess to precipitate AgI. The precipitate was left overnight to settle, transferred to a centrifuge tube, washed with deionized water three times, and dried in an oven at 70°C. The dried precipitate was thoroughly mixed with an equal volume of silver powder. About 5 mg of this mix was loaded in a sample holder for the AMS measurement of 129 I. The remaining 50 mL of solution were separated into two 25-mL aliquots. A determination of total iodine was performed on each aliquot using a gas chromatograph (GC) with an electron-capture detector. The detection limit of this method has been demonstrated to be <0.05 µg iodine per g soil (Marchetti et al. 1994, 1997), well below the concentration range of ~1 µg/g commonly observed in soils. #### ¹²⁹I measurements Measurements of ¹²⁹I were performed using the AMS facility at Purdue University (PrimeLab). Isotopic measurements by AMS are relative measurements, i.e., they measure ratios of counts that are scaled to ¹²⁹I/I using a NIST standard. To obtain the actual number of ¹²⁹I atoms, the measured ¹²⁹I-to-I ratio must be multiplied by the total number of iodine atoms in the sample. For the present case, the total number of iodine atoms in the soil sample (from the GC measurement) plus the number of iodine atoms in the KI carrier (known from the amount of carrier added). Note that essentially all of the iodine in the AMS sample is in fact from the carrier, i.e., typically 10 mg carrier compared with µg quantities in the soil sample itself. #### 137Cs measurements About 500 g of soil from each soil layer were analyzed using a gamma-ray spectrometer with a GeLi detector. All gamma-ray-emitting nuclides with activities above the limit of detection were recorded. Here, only the ¹³⁷Cs results are presented for comparison with the ¹²⁹I results; measured activities of ¹³⁷Cs were converted to atoms for intercomparison. Measurements of ¹³⁷Cs were made in Minsk with QA measurements at LLNL and the University of Utah. The QA measurements have demonstrated good agreement between the labs. ## **Deposition densities** The densities of ground deposition for ¹²⁹I and ¹³⁷Cs were obtained from the soil core measurements. For ¹²⁹I, the deposition density at each sampling site was obtained from the measured number of atoms of ¹²⁹I per gram of soil minus background times the total number of grams of soil sampled. This deposition density was then scaled to a ground surface area of 1 m². For ¹³⁷Cs, the same procedure was used with the exception that the gamma-ray spectrometry measurement results in Bq per gram soil were first converted to atoms per gram. The deposition densities for ¹³¹I at the time of the accident were inferred from the measured ¹²⁹I densities by dividing atoms of ¹²⁹I per m² by 15. The proportionality constant of 15 was obtained from measurements of archived soil samples, estimates based on reactor fuel burn-up, and ¹²⁹I/¹³¹I ratios from measurements of rain water shortly after the accident (Straume et al. 1996). One archived soil sample was obtained that was measured for ¹³¹I soon (11 May 1986) after the accident in 1986 and then remeasured for ¹²⁹I in 1994. This provided a direct measure of the ratio of ¹²⁹I-to-¹³¹I in the soil sample, which was collected on 1 May 1986, from Holochie, a settlement north of Gomel. Four aliquots from this sample were measured for ¹²⁹I in 1994. The results were 1.18×10¹⁰, 1.49×10¹⁰, 1.20×10¹⁰, and 1.04×10¹⁰ atoms of ¹²⁹I per g of soil. When compared with the decay-corrected results for ¹³¹I of 1.0×10⁹ atoms per g (for 26 April 1986), the atomic ratios for ¹²⁹I-to-¹³¹I are 11, 14, 12, and 10, respectively. These values result in a mean of 12 and a standard deviation of 3. Estimates based on fuel burnup resulted in activity ratios ranging from 1.5×10^{-8} to 2.1×10^{-8} (Ermilov et al. 1993), which convert to atomic ratios of 11 to 15. Also, measurements made on three rainwater samples collected in Israel and Germany within a couple of weeks of the accident resulted in an unweighted mean of 21±13 and a weighted mean of 15±3. Taken together, results indicate that the atomic ratio of ¹²⁹I-to-¹³¹I released from the Chernobyl reactor during the 1986 accident was in the 10 to 20 range. #### **RESULTS** #### Iodine extraction The efficiency of our iodine-extraction method was determined using standard-reference materials, including NIST soils (Marchetti et al. 1997). In brief, the recovery of total iodine from the reference soil samples ranged from 89.0% to 97.7%. It is expected that the recovery efficiency would be even higher (essentially 100%) for iodine deposited from Chernobyl because such deposition would mostly adhere to the surfaces of minerals, whereas much of the iodine in the NIST soils was actually trapped inside the crystalline structure of the minerals. # Comparison of soil-depth profiles, 1993 vs. 1997 Sites in two settlements in Belarus were sampled in both 1993 and 1997. The settlements resampled were Veprin and Holochie. Both the ¹²⁹I and ¹³⁷Cs depth profiles obtained from the 1997 core samples agree very well with those obtained four years previously in 1993. The ¹²⁹I profiles obtained for Veprin-2 are seen in Fig. 2, and the ¹³⁷Cs profiles are seen in Fig. 3. **Figure 2**. Depth profiles of ¹²⁹I measured in soil cores collected in 1993 and 1997 from Veprin, Belarus. **Figure 3**. Depth profiles of ¹³⁷Cs measured in soil cores collected in 1993 and 1997 from Veprin, Belarus. These measurements were made in the same core samples subsequently used to measure ¹²⁹I and seen in Fig. 2. # Deposition of 129 I Results for the deposition densities of ¹²⁹I are listed in Table 2. Again, these sampling sites correspond to the sampling locations indicated on Figure 1. The data show a range of deposition densities spanning more than two orders of magnitude from essentially background in Ostrovskie (Vitebsk Oblast) to a maximum in Pogonnoe within the 30 km zone. The data also show that although there are large regional differences (as expected) in the deposition densities for ¹²⁹I, the intra-settlement differences tend to be only a factor of about two. That is, when comparing the deposition densities obtained from the different sampling sites <u>within</u> a settlement, the mean difference is a factor of 1.95±1.10. If the same sampling site, but different locations within the site, is re-sampled the deposition densities obtained from the two samplings are even closer. This is illustrated in Figure 2 where the samplings were done four years apart resulting in deposition densities of 2.07×10^{14} atoms ¹²⁹I per m² in 1993 and 1.41×10^{14} in 1997. # Deposition of ¹³⁷Cs Results for the deposition densities of ¹³⁷Cs are listed in Table 3. Again, these sampling sites correspond to the sampling locations indicated on Figure 1. The data show a range of deposition densities spanning more than three orders of magnitude from $\sim 10^{12}$ atoms per m² in Ostrovskie (Vitebsk Oblast) to a maximum of 6.88×10^{15} in Chudiany in the rain-out spot in the Mogilev Oblast. As with ¹²⁹I deposition, the data for ¹³⁷Cs also show that the intra-settlement differences tend to be only a factor of about two, i.e., 1.78±1.05. # Deposition of ¹³¹I inferred from ¹²⁹I The deposition densities of ¹³¹I at the time of the accident inferred from our measured ¹²⁹I results are listed in Table 4. Also, compared in Figure 4 are the ratios est. ¹³¹I-to-¹³¹I and ¹²⁹I-to-¹³⁷Cs for each sampling site. In this case, "est. I-131" is the deposition of ¹³¹I estimated to have occurred on April 26-28, 1986, based on our | Table | 2. De | position | densities | of | I-129 | in | Belarus | |-------|-------|----------|-----------|----|-------|----|---------| |-------|-------|----------|-----------|----|-------|----|---------| | Table 2. | Debositio | ii delisities | OI I-129 III DE | <u>iarus</u> | | |---------------|-------------|---------------|-----------------|--------------|----------| | Settlement & | Map | I-129/m2 | Settlement & | Map | I-129/m2 | | Sampling Site | # | | Sampling Site | # | | | Tulgovitchi-1 | 1 | 3.72E+14 | Grandichi-1 | 39 | 3.75E+13 | | Tulgovitchi-2 | 2 | 1.20E+14 | Grandichi-2 | 40 | 2.46E+13 | | Deriazshna-1 | 3 | 4.32E+14 | Lunno-1 | 41 | 2.23E+13 | | Deryashnya-2 | 2 4 | 2.49E+14 | Lunno-2 | 42 | 2.01E+13 | | Deryashnya-3 | 5 | 3.88E+14 | Pogonnoe-1 | 43 | 8.27E+14 | | Veprin-1 | 6 | 1.45E+14 | Pogonnoe-2 | 44 | 3.79E+14 | | Veprin-2 | 7 | 2.07E+14 | Izabelino-1 | 45 | 2.71E+13 | | Gorodische-1 | 8 | 7.61E+12 | Izabelino-2 | 46 | 1.86E+13 | | Gorodische-2 | 9 | 2.15E+13 | Shevernichi-1 | 47 | 7.41E+12 | | Boloto-1 | 10 | 8.56E+12 | Shevernichi-1 | 48 | 1.02E+13 | | Boloto-2 | 11 | 2.43E+13 | Osipovichi-1 | 49 | 2.12E+13 | | Pruzhany-1 | 12 | 1.21E+13 | Osipovichi-2 | 50 | 1.23E+13 | | Pruzhany-2 | 13 | 4.94E+12 | N. Borschevka-1 | 51 | 3.57E+14 | | Ostrogliady-1 | 14 | 1.56E+14 | N. Borschevka-2 | 52 | 5.76E+13 | | Ostrogliady-2 | 15 | 1.63E+14 | Chudiany-1 | 53 | 3.05E+14 | | Bogino-1 | 16 | 1.32E+13 | Rotki-1 | 54 | 3.88E+13 | | Bogino-2 | 17 | 2.30E+13 | Bobr-1 | 55 | 1.50E+13 | | Obrub-1 | 18 | 9.36E+12 | Bobr-2 | 56 | 3.18E+13 | | Obrub-2 | 19 | 2.93E+13 | Pleschenitsy-1 | 57 | 1.01E+13 | | Holochie-1 | 20 | 1.53E+14 | Pleschenitsy-2 | 58 | 2.26E+13 | | Holochie-2 | 21 | 3.63E+13 | Losha-1 | 59 | 1.67E+13 | | Yankovichi-1 | 22 | 8.89E+12 | Losha-2 | 60 | 2.54E+13 | | Yankovichi-2 | 23 | 2.28E+13 | Zabolotye-1 | 61 | 2.10E+13 | | Lyntupy-1 | 24 | 1.75E+13 | Zabolotye-2 | 62 | 1.68E+13 | | Lyntupy-2 | 25 | 2.43E+13 | Krynka-1 | 63 | 1.54E+13 | | Babinichi-1 | 26 | 1.14E+13 | Krynka-2 | 64 | 8.71E+12 | | Babinichi-2 | 27 | 2.07E+13 | Kulikovka-1 | 65 | 1.07E+14 | | Korma-2 | 28 | 6.23E+13 | Kulikovka-2 | 66 | 8.93E+13 | | Korma-1 | 29 | 5.19E+13 | Bokhany-1 | 67 | 1.88E+13 | | Stodolichi-1 | 30 | 5.19E+13 | Bokhany-2 | 68 | 1.44E+13 | | Stodolichi-2 | 31 | 5.39E+13 | Volkovichi-1 | 69 | 3.17E+13 | | Simonichi-1 | 32 | 2.79E+13 | Volkovichi-2 | 70 | 7.70E+13 | | Simonichi-2 | 33 | 2.86E+13 | Veprin-1 | 71 | 1.96E+14 | | Yanovka-1 | 34 | 6.21E+13 | Veprin-2 | 72 | 1.41E+14 | | Yanovka-2 | 35 | 3.79E+13 | Bentyai-1 | 73 | 1.00E+13 | | Porechye-1 | 36 | 2.63E+13 | Bentyai-2 | 74 | 1.36E+13 | | Porechye-2 | 37 | 1.63E+13 | Ostrovskie-1 | 75 | nd | | Holochie-1 | 38 | 7.81E+13 | Ostrovskie-2 | 76 | nd | | nd - not dete | otable abov | | d lorrol | | | nd = not detectable above background level. | Table 3. | Deposition | densities | of | Cs-137 | in | Belarus | |----------|------------|-----------|----|--------|----|---------| |----------|------------|-----------|----|--------|----|---------| | | | ii delisities | | eiarus | | |---------------|-----|------------------|-----------------|--------|-----------| | Settlement & | Map | Cs-137/m2 | Settlement & | Map | Cs-137/m2 | | Sampling Site | # | | Sampling Site | # | | | Tulgovitchi-1 | 1 | 7.76E+14 | Grandichi-1 | 39 | 4.46E+12 | | Tulgovitchi-2 | 2 | 1.13E+15 | Grandichi-2 | 40 | 5.68E+12 | | Deriazshna-1 | 3 | 3.15E+15 | Lunno-1 | 41 | 3.02E+12 | | Deryashnya-2 | 4 | 5.08E+15 | Lunno-2 | 42 | 6.62E+12 | | Deryashnya-3 | 5 | 4.29E+15 | Pogonnoe-1 | 43 | 2.71E+15 | | Veprin-1 | 6 | 2.50E+15 | Pogonnoe-2 | 44 | 3.65E+15 | | Veprin-2 | 7 | 2.61E+15 | Izabelino-1 | 45 | 6.49E+12 | | Gorodische-1 | 8 | 3.74E+12 | Izabelino-2 | 46 | 2.06E+12 | | Gorodische-2 | 9 | 2.61E+12 | Shevernichi-1 | 47 | 7.14E+13 | | Boloto-1 | 10 | 1.55E+12 | Shevernichi-1 | 48 | 8.16E+13 | | Boloto-2 | 11 | 6.12E+12 | Osipovichi-1 | 49 | 4.20E+13 | | Pruzhany-1 | 12 | 5.65E+12 | Osipovichi-2 | 50 | 9.20E+13 | | Pruzhany-2 | 13 | 7.50E+12 | N. Borschevka-1 | 51 | 6.55E+13 | | Ostrogliady-1 | 14 | 1.63E+15 | N. Borschevka-2 | 52 | 1.21E+14 | | Ostrogliady-2 | 15 | 6.13E+14 | Chudiany-1 | 53 | 6.88E+15 | | Bogino-1 | 16 | 1.14E+12 | Rotki-1 | 54 | 5.85E+14 | | Bogino-2 | 17 | 2.17E+12 | Bobr-1 | 55 | 2.11E+13 | | Obrub-1 | 18 | 1.83E+12 | Bobr-2 | 56 | 1.92E+13 | | Obrub-2 | 19 | 2.06E+12 | Pleschenitsy-1 | 57 | 3.75E+12 | | Holochie-1 | 20 | 1.51E+15 | Pleschenitsy-2 | 58 | 3.16E+12 | | Holochie-2 | 21 | 2.42E+14 | Losha-1 | 59 | 6.65E+12 | | Yankovichi-1 | 22 | 2.68E+12 | Losha-2 | 60 | 1.02E+13 | | Yankovichi-2 | 23 | 2.86E+12 | Zabolotye-1 | 61 | 1.37E+13 | | Lyntupy-1 | 24 | 3.31E+12 | Zabolotye-2 | 62 | 1.01E+13 | | Lyntupy-2 | 25 | 2.06E+12 | Krynka-1 | 63 | 9.38E+12 | | Babinichi-1 | 26 | 6.22E+12 | Krynka-2 | 64 | 5.08E+12 | | Babinichi-2 | 27 | 2.06E+12 | Kulikovka-1 | 65 | 1.51E+15 | | Korma-2 | 28 | 7.28E+14 | Kulikovka-2 | 66 | 1.49E+15 | | Korma-1 | 29 | 5.49E+14 | Bokhany-1 | 67 | 1.36E+13 | | Stodolichi-1 | 30 | 1.32E+14 | Bokhany-2 | 68 | 1.39E+13 | | Stodolichi-2 | 31 | 7.40E+13 | Volkovichi-1 | 69 | 1.48E+14 | | Simonichi-1 | 32 | 8.10E+13 | Volkovichi-2 | 70 | 3.28E+14 | | Simonichi-2 | 33 | 7.48E+13 | Veprin-1 | 71 | 1.52E+15 | | Yanovka-1 | 34 | 1.39E+14 | Veprin-2 | 72 | 1.36E+15 | | Yanovka-2 | 35 | 1. 74E+14 | Bentyai-1 | 73 | 2.60E+12 | | Porechye-1 | 36 | 1.78E+13 | Bentyai-2 | 74 | nd | | Porechye-2 | 37 | 1.25E+13 | Ostrovskie-1 | 75 | nd | | Holochie-1 | 38 | 6.64E+14 | Ostrovskie-2 | 76 | nd | | Table 4. D | eposition | densities o | f I-131 inferred | from I-129 | in Belarus | |---------------|-----------|---------------|------------------|------------|---------------| | Settlement & | Map | est. I-131/m2 | Settlement & | Мар | est. I-131/m2 | | Sampling Site | # | | Sampling Site | # | | | Tulgovitchi-1 | 1 | 2.48E+13 | Grandichi-1 | 39 | 2.50E+12 | | Tulgovitchi-2 | 2 | 7.99E+12 | Grandichi-2 | 40 | 1.64E+12 | | Deriazshna-1 | 3 | 2.88E+13 | Lunno-1 | 41 | 1.49E+12 | | Deryashnya-2 | 4 | 1.66E+13 | Lunno-2 | 42 | 1.34E+12 | | Deryashnya-3 | 5 | 2.59E+13 | Pogonnoe-1 | 43 | 5.51E+13 | | Veprin-1 | 6 | 9.67E+12 | Pogonnoe-2 | 44 | 2.53E+13 | | Veprin-2 | 7 | 1.38E+13 | Izabelino-1 | 45 | 1.81E+12 | | Gorodische-1 | 8 | 5.07E+11 | Izabelino-2 | 46 | 1.24E+12 | | Gorodische-2 | 9 | 1.43E+12 | Shevernichi-1 | 47 | 4.94E+11 | | Boloto-1 | 10 | 5.71E+11 | Shevernichi-1 | 48 | 6.79E+11 | | Boloto-2 | 11 | 1.62E+12 | Osipovichi-1 | 49 | 1.41E+12 | | Pruzhany-1 | 12 | 8.09E+11 | Osipovichi-2 | 50 | 8.22E+11 | | Pruzhany-2 | 13 | 3.29E+11 | N. Borschevka-1 | 51 | 2.38E+13 | | Ostrogliady-1 | 14 | 1.04E+13 | N. Borschevka-2 | 52 | 3.84E+12 | | Ostrogliady-2 | 15 | 1.09E+13 | Chudiany-1 | 53 | 2.03E+13 | | Bogino-1 | 16 | 8.80E+11 | Rotki-1 | 54 | 2.59E+12 | | Bogino-2 | 17 | 1.53E+12 | Bobr-1 | 55 | 1.00E+12 | | Obrub-1 | 18 | 6.24E+11 | Bobr-2 | 56 | 2.12E+12 | | Obrub-2 | 19 | 1.95E+12 | Pleschenitsy-1 | 57 | 6.71E+11 | | Holochie-1 | 20 | 1.02E+13 | Pleschenitsy-2 | 58 | 1.51E+12 | | Holochie-2 | 21 | 2.42E+12 | Losha-1 | 59 | 1.11E+12 | | Yankovichi-1 | 22 | 5.93E+11 | Losha-2 | 60 | 1.69E+12 | | Yankovichi-2 | 23 | 1.52E+12 | Zabolotye-1 | 61 | 1.40E+12 | | Lyntupy-1 | 24 | 1.17E+12 | Zabolotye-2 | 62 | 1.12E+12 | | Lyntupy-2 | 25 | 1.62E+12 | Krynka-1 | 63 | 1.02E+12 | | Babinichi-1 | 26 | 7.63E+11 | Krynka-2 | 64 | 5.81E+11 | | Babinichi-2 | 27 | 1.38E+12 | Kulikovka-1 | 65 | 7.13E+12 | | Korma-2 | 28 | 4.15E+12 | Kulikovka-2 | 66 | 5.95E+12 | | Korma-1 | 29 | 3.46E+12 | Bokhany-1 | 67 | 1.25E+12 | | Stodolichi-1 | 30 | 3.46E+12 | Bokhany-2 | 68 | 9.58E+11 | | Stodolichi-2 | 31 | 3.59E+12 | Volkovichi-1 | 69 | 2.11E+12 | | Simonichi-1 | 32 | 1.86E+12 | Volkovichi-2 | 70 | 5.13E+12 | | Simonichi-2 | 33 | 1.91E+12 | Veprin-1 | 71 | 1.31E+13 | | Yanovka-1 | 34 | 4.14E+12 | Veprin-2 | 72 | 9.43E+12 | | Yanovka-2 | 35 | 2.53E+12 | Bentyai-1 | 73 | 6.67E+11 | | Porechye-1 | 36 | 1.75E+12 | Bentyai-2 | 74 | 9.73E+12 | | Porechye-2 | 37 | 1.08E+12 | Ostrovskie-1 | 75 | nd | | Holochie-1 | 38 | 5.20E+12 | Ostrovskie-2 | 76 | nd | contemporary ¹²⁹I deposition measurements. "I-131" is the deposition density of ¹³¹I actually measured soon after the accident (and back-decayed to April 26-28, 1986) in soil samples obtained from some (not all) of the settlements that we have sampled. "I-129" and "Cs-137" are the deposition densities of these isotopes that we have measured in Belarus (refer to sampling sites in Table 1 and Figure 1). Importantly, it is clear from Figure 4 that the correlation between ¹³¹I inferred from our measured ¹²⁹I and ¹³¹I actually measured in the same settlements immediately after the accident in 1986 is much better than the correlation between ¹²⁹I and ¹³⁷Cs, even though ¹²⁹I and ¹³⁷Cs were measured in the same core samples. This demonstrates the expected result that ¹²⁹I is superior to ¹³⁷Cs as a surrogate for ¹³¹I. It is noted that ¹³⁷Cs is presently being used as a surrogate for ¹³¹I to reconstruct thyroid doses in regions with little or no direct thyroid measurements. Clearly, ¹²⁹I should be used as a surrogate instead of ¹³⁷Cs in such regions. #### Total iodine concentrations in Belarus soil The total iodine concentrations measured in Belarus soil are listed in Table 5. These data are illustrated in Figure 5 and show the large number of measurements made in this project across the entire country of Belarus. Importantly, the iodine concentrations (mostly below 1 μ g/g) are one to two orders of magnitude lower than the iodine concentrations in the Marshall Islands and Japan, places where other thyroid-cancer studies have been performed. Also, the Belarus soil concentrations are factors of five to ten lower than those measured in the western United States, which tend to be in the 5 μ g/g range. For Belarus (and probably also for other countries in the region), the low iodine concentration in the local environment, and apparently in the diet generally, may be an issue that deserves further evaluation in connection with its potential influence on radiogenic risk for thyroid cancer. while a large number of the open circles are outside the lines, demonstrating that ¹²⁹I is a better than ¹³⁷Cs as a surrogate Figure 4. Comparison of ¹²⁹I and ¹³⁷Cs as surrogates for ¹³¹I deposition in Belarus. The data plotted are the ratio ¹²⁹I/¹³⁷Cs (open circles) and the ratio est. ¹³¹I/measured ¹³¹I (solid circles), where est. ¹³¹I was inferred from our ¹²³I measurements by dividing the ¹²I deposition densities by 15 (see text). Note that about 90% of the solid circles are within the dashed lines for ¹³¹I deposition. | Table 5. Total | iodine | e concent | trations in | Belarus | | | | |-----------------|--------|-----------|-------------|--------------------------|-----|--------|--------| | Settlement & | Мар | lodine | SD | Settlement & | Мар | lodine | SD | | Sampling Site | # | μg/g | | Sampling Site | # | μg/g | | | Tulgovitchi-1 | 1 | 0.3155 | 0.0122 | Grandichi-1 | 39 | 0.3520 | 0.0161 | | Tulgovitchi-2 | 2 | 0.2615 | 0.0503 | Grandichi-2 | 40 | 2.4507 | 0.1426 | | Deriazshna-1 | 3 | 0.3543 | 0.0374 | Lunno-1 | 41 | 0.5879 | 0.0316 | | Deryashnya-2 | 4 | 0.6458 | 0.0755 | Lunno-2 | 42 | 1.0337 | 0.0334 | | Deryashnya-3 | 5 | 1.1904 | 0.0718 | Pogonnoe-1 | 43 | 0.9120 | 0.0299 | | Veprin-1 | 6 | 1.1392 | 0.0296 | Pogonnoe-2 | 44 | 0.9960 | 0.0259 | | Veprin-2 | 7 | 0.4885 | 0.0064 | Izabelino-1 | 45 | 1.3121 | 0.0515 | | Gorodische-1 | 8 | 0.5907 | 0.0353 | Izabelino-2 | 46 | 0.8366 | 0.0380 | | Gorodische-2 | 9 | 2.2898 | 0.1260 | Shevernichi-1 | 47 | 0.4022 | 0.0258 | | Boloto-1 | 10 | 0.3883 | 0.0286 | Shevernichi-2 | 48 | 0.4939 | 0.0161 | | Boloto-2 | 11 | 0.6427 | 0.0848 | Osipovichi-1 | 49 | 0.7202 | 0.0226 | | Pruzhany-1 | 12 | 0.5644 | 0.0080 | Osipovichi-2 | 50 | 0.3529 | 0.0099 | | Pruzhany-2 | 13 | 0.1453 | 0.0028 | N. Borschevka-1 | 5 1 | 0.8452 | 0.0219 | | Ostrogliady-1 | 14 | 0.9426 | 0.1131 | N. Borschevka-2 | 52 | 1.6185 | 0.0741 | | Ostrogliady-2 | 15 | 0.5001 | 0.0131 | Chudiany-1 | 53 | 1.0246 | 0.0475 | | Bogino-1 | 16 | 0.8233 | 0.0342 | Rotki-1 | 54 | 0.5331 | 0.0160 | | Bogino-2 | 17 | 0.6380 | 0.0406 | Bobr-1 | 55 | 0.8583 | 0.0347 | | Obrub-1 | 18 | 0.2678 | 0.0344 | Bobr-2 | 56 | 0.6544 | 0.0344 | | Obrub-2 | 19 | 1.1184 | 0.0664 | Pleschenitsy-1 | 57 | 1.7440 | 0.0543 | | Holochie-1 | 20 | 1.6200 | 0.1055 | Pleschenitsy-2 | 58 | 0.9389 | 0.0561 | | Holochie-2 | 21 | 2.8846 | 0.0761 | Losha-1 | 59 | 0.8573 | 0.0320 | | Yankovichi-1 | 22 | 0.2590 | 0.0087 | Losha-2 | 60 | 0.9469 | 0.1094 | | Yankovichi-2 | 23 | 0.8723 | 0.0274 | Zabolotye-1 | 61 | 1.2044 | 0.0408 | | Lyntupy-1 | 24 | 0.8488 | 0.0175 | Zabolotye-2 | 62 | 1.3644 | 0.0460 | | Lyntupy-2 | 25 | 0.6697 | 0.0450 | Krynka-1 | 63 | 0.8596 | 0.0735 | | Babinichi-1 | 26 | 0.7872 | 0.0275 | Krynka-2 | 64 | 0.7825 | 0.0633 | | Babinichi-2 | 27 | 0.7802 | 0.0420 | Kulikovka-1 | 65 | 0.7114 | 0.0275 | | Korma-2 | 28 | 1.7639 | 0.0706 | Kulikovka-2 | 66 | 0.8819 | 0.0397 | | Korma-1 | 29 | 0.4599 | 0.0296 | Bokhany-1 | 67 | 2.3126 | 0.1645 | | Stodolichi-1 | 30 | 0.5527 | 0.0239 | Bokhany-2 | 68 | 0.7235 | 0.0484 | | Stodolichi-2 | 31 | 0.3645 | 0.0247 | Volkovichi-1 | 69 | 1.7626 | 0.1681 | | Simonichi-1 | 32 | 0.8042 | 0.0683 | Volkovichi-2 | 70 | 1.6869 | 0.1621 | | Simonichi-2 | 33 | 0.6104 | 0.0408 | Veprin-1 | 71 | 1.0226 | 0.0783 | | Yanovka-1 | 34 | 0.4778 | 0.0579 | Veprin-2 | 72 | 0.7217 | 0.0304 | | Yanovka-2 | 35 | 0.7092 | 0.0185 | Bentyai-1 | 73 | 0.6431 | 0.0340 | | Porechye-1 | 36 | 0.7679 | 0.0659 | Bentyai-2 | 74 | 2.3499 | 0.1073 | | Porechye-2 | 37 | 0.5546 | 0.0321 | Ostrovskie-1 | 75 | 0.7786 | 0.0186 | | The foreign and | 0.0 | 0.0745 | 0.0444 | O a 4 m a constato a 100 | 7.0 | 4 0000 | 0.0500 | Ostrovskie-2 76 1.3628 0.0562 0.0411 Holochie-1 38 0.9715 **Figure 5**. Total iodine concentrations in Belarus soil. The soil concentration in the Marshall Islands is included for comparison. #### CONCLUSIONS CONCERNING THE SCIENTIFIC/TECHNICAL DATA The following conclusions can be drawn from the available data: - Both ¹²⁹I and ¹³⁷Cs are retained firmly in the top ~15 to 20 cm of the soil and thus the possibility for obtaining samples for deposition-density measurements will remain. - Deposition densities of ¹²⁹I can be measured accurately using the methods and AMS capabilities developed under the Feasibility Study (e.g., Straume et al. 1996, Marchetti et al. 1997) and the present Follow-on Study. - The results show good agreement between ¹³¹I deposition inferred from our ¹²⁹I measurements and ¹³¹I actually measured in the same settlements in 1986. - In contrast, the correlation between ¹²⁹I and ¹³⁷Cs deposition is poor, hence ¹³⁷Cs is not a reliable surrogate for ¹³¹I. - Indications are that total iodine concentrations in top soil from Belarus are low compared with other regions of the world where radiogenic thyroid cancer has been studied (e.g., Japan and Marshall Islands, where iodine is obtained from sea food diets as well). This suggests the need for additional evaluations to explore whether the relatively low iodine concentrations in Belarus soil resulted in low concentrations in the diet and whether this might have modified the risk of developing radiogenic thyroid cancer. - Finally, the use of ¹²⁹I deposition data measured by AMS appears to be the only method currently available to obtain reliable radioiodine deposition densities in regions where direct iodine measurements were absent or inadequate and, also, to provide confirmation and QC in areas where such measurements were made. #### MILESTONES AND DELIVERABLES - I. Milestones & Status of Completion - 1. Develop a joint agreement between study participants in Belarus, Germany, and the US. Completed in May 1997. 2. Develop a technical protocol for obtaining and processing soil samples. Completed in May 1997. 3. Jointly with the Research and Clinical Institute of Radiation Medicine and Endocrinology (Minsk), GSF (Munich), and the University of Utah, provide support and perform a soil sampling expedition that includes settlements throughout the country of Belarus. Completed in July 1997 (see Table 1 and Figure 1 for sampling locations). 4. Provide training for a Minsk chemist at the University of Utah in procedures for iodine extraction and measurement. Completed in October 1997. 5. Procurement and shipment of laboratory equipment required to set-up the Minsk iodine laboratory. Completed in February 1998. 6. Shipment of soil samples from Minsk to the University of Utah. Completed in June 1998. 7. Extraction of iodine and measurement of ¹²⁹I, total iodine, and ¹³⁷Cs in soil samples. Determination of deposition densities for ¹²⁹I, ¹³¹I, and ¹³⁷Cs from our measurements together with the ratio for ¹²⁹I-to-¹³¹I at the time of the accident. Completed in September 1999. #### II. Other Relevant Information - As promised, this project was successfully completed in FY99 with FY98 funding without the need for additional support from DOE. - It was originally planned that a sub-set of the samples collected in Belarus would be measured for ¹²⁹I by GSF in Munich. However, they informed us that they lost their capability to measure ¹²⁹I and therefore all measurements were made by Dr. Straume in Utah. This added some unexpected cost to the effort which was absorbed by the University of Utah. ## III. Future Use of this Capability It is now fully expected that this unique capability will be used to improve the thyroid dosimetry in Belarus, Ukraine, and parts of Russia contaminated by Chernobyl fallout. NCI is interested in using ¹²⁹I to help in their thyroid dosimetry efforts in support of Chernobyl health studies. During the past year, Prof. Straume has been working with NCI to help define specific applications. #### **REFERENCES** - Doshi, G.R.; Joshi, S.N.; Pillai, K.C. ¹²⁹I in soil and grass samples around a nuclear reprocessing plant. J. Radioanal. Nucl. Chem. Letters 155:115-127; 1991. - Elmore, D.; Phillips, F.M. Accelerator mass spectrometry for measurement of long-lived radioisotopes. Science 236:543-550; 1987. - Ermilov, A.P.; Makarenkova, I.I.; Melekhin, Yu.A. Research of neutron activation measurements of iodine in biological samples applying to the problem of the Chernobyl iodine reconstruction. Mendeleevo, Moscow Oblast: All-Russian Scientific Research Institute of Physical-Technical and Radiotechnical Measurements; 1993 (in Russian). - Handl, J.; Pfau, A.; Huth, W. Measurements of ¹²⁹I in human and bovine thyroids in Europe—transfer of ¹²⁹I into the food chain. Health Phys. 58:609–618; 1990. - Katagiri, H.; Narita, O.; Yamoto, A.; Kinoshita, M. Low level measurements of ¹²⁹I in environmental samples. J. Radioanal. Nucl. Chem., Articles 138:187-192; 1990. - Kocher, D. C. A validation test of a model for long-term retention of ¹²⁹I in surface soils. Health Phys. 60:523–531; 1991. - Marchetti, A.A.; Rose, L.; Straume, T. A simple and reliable method to extract and measure iodine in soils. Analytica Chimica Acta 296:243-247; 1994. - Marchetti, A.A.; F. Gu; and T. Straume, "Determination of total iodine and sample preparation for AMS measurement of ¹²⁹I in environmental matrices," *Nucl. Instr. And Meth. In Phys. Res.* B 123, 352-355 (1997). - Muramatsu, Y.; Uchida, S.; Ohmomo, Y. Determination of ¹²⁹I and ¹²⁷I in soil and tracer experiments on the adsorption of iodine on soil. J. Radioanal. Nucl. Chem. Articles 138:377-384; 1990. - Straume, T.; A.A. Marchetti, L.R. Anspaugh, et al., "The feasibility of using ¹²⁹I to reconstruct ¹³¹I deposition from the Chernobyl reactor accident", *Health Phys.* 71, 1–8 (1996). - Straume, T.; L. R. Anspaugh; J. N. Lucas; A. A. Marchetti; E. H. Haskell; I. A. Likhtarev, V. V. Chumak, M. O. Degteva, V. T. Khrush, V. F. Minenko, "Emerging technological bases for retrospective dosimetry," *Stem Cells* 15 (suppl. 2), 183-193 (1997).